Тел.: +7 (499) 678-23-16 E-mail: info@faserkraft.ru

Мембранные технологии

Ультрафильтрация сточных вод в статье:.

Технология доочистки сточных вод с использованием ультрафильтрации

Опубликовано: Водоснабжение и санитарная техника, 2013, № 12, 32-35

Майборода А. Б., кандидат химических наук, технический директор, ООО «Фазеркрафт»

Катраева И. В., кандидат технических наук, доцент кафедры экологии и природопользования и кафедры водоснабжения и водоотведения, Нижегородский государственный архитектурно-строительный университет (ННГАСУ)

Колпаков М. В., кандидат технических наук, технолог, ООО «Джурби ВотэТек»


В статье приведены результаты исследований по доочистке биологически очищенных сточных вод от фосфат-ионов и взвешенных веществ с помощью ультрафильтрации в сочетании с коагуляцией. Для тангенциальной ультрафильтрации в режиме «снаружи-внутрь» использовали половолоконный модуль российской компании ООО «Фазеркрафт» (г. Москва) с мембранами из поливинилиденфторида (ПВДФ). Изучено влияние на процесс фильтрации таких параметров, как трансмембранное давление и расход циркулирующего раствора. Исследования показали, что предлагаемая технология позволяет практически полностью очистить сточную воду от взвешенных веществ и снизить концентрацию фосфатов на 97%.

Ключевые слова: ультрафильтрация, доочистка сточных вод, удаление фосфатов, удаление взвешенных веществ


Поступление избыточного количества биогенных веществ (азота и фосфора) со сточными водами в поверхностные водные источники ведет к нарушению состояния водных экосистем и развитию процесса эвтрофикации водных объектов. Для удаления избыточного фосфора из сточных вод, прошедших глубокую биологическую очистку, наиболее часто используют физико-химический метод с применением различных минеральных коагулянтов [1-3]. Осадок, содержащий фосфаты, отделяют осаждением и фильтрованием. Ультрафильтрация обеспечивает высокую степень очистки фильтрата и по этой причине все чаще используется в технологических схемах дополнительной обработки сточных вод [4].

В лаборатории ННГАСУ были проведены экспериментальные исследования по доочистке биологически очищенных бытовых сточных вод после вторичного отстойника с использованием технологии, которая включала реагентную обработку и ультрафильтрацию с концентрированием полученной суспензии. Использование ультрафильтрационных мембран позволяет практически полностью задержать взвешенные вещества и, как показали предыдущие испытания [5], снизить общее микробное число в очищаемой воде на 3-4 порядка за счет удержания бактерий, что, соответственно, позволяет значительно снизить расход обеззараживающего реагента. Схема и внешний вид лабораторной установки представлены на рис.1

  

Рис 1-1. Внешний вид лабораторной установки.
Рис 1-2. Схема лабораторной установки.

Рис. 1. Внешний вид и схема лабораторной установки: 1-ёмкость для концентрирования; 2-рециркуляционный насос; 3-манометр; 4,9-цифровой измеритель потока; 5-мембранный модуль; 6-контроллер автоматизации; 7-перистальтический насос с реверсом; 8-датчик давления; 10-ёмкость фильтрата.

В качестве мембранного модуля применили половолоконный мембранный модуль российской компании ООО «Фазеркрафт» (г. Москва). Он представлял собой аппарат с цилиндрическим кожухом, внутри которого помещен пучок полых волокон, имеющих пористую стенку. С торцов аппарата пучок полых волокон был фиксирован эпоксидным компаундом. Технические характеристики мембранного модуля приведены в табл. 1.

Таблица 1. Технические характеристики мембранного модуля

Материал мембраны поливинилиденфторид (ПВДФ)
Номинальная отсекаемая молекулярная масса, кДа 300
Размеры полого волокна (dнар/dвн), мм 2,0/1,3
Длина волокон, мм 500
Количество волокон, шт. 35
Поверхность фильтрации, м2 0,1
Рекомендуемое трансмембранное давление, бар 0,1-1,0
Внутренний диаметр кожуха, мм 17

В качестве коагулянта в сточную воду дозировали гидроксихлорид алюминия, доза которого в пересчете на Al2O3 составляла 20 мг/л. Для корректировки рН использовали известь в дозировке 2 мг CaO на 1 л очищаемой воды. Полученную суспензию циркуляционным вихревым насосом перекачивали по замкнутому контуру через кожух мембранного модуля, фильтрат отводился из внутренних каналов волокон. На линии фильтрата перистальтическим насосом создавали разрежение, за счет которого осуществлялась фильтрация. В ходе эксперимента трансмембранное давление фильтрации (ТМД ф) изменяли в интервале 0,05÷0,25 бар. После добавления коагулянта в емкость 1 суспензию концентрировали в 20 раз в течение суток, затем концентрат удаляли из емкости 1, заливали в нее новую порцию воды из вторичного отстойника и повторяли процесс очистки.

Ультрафильтрационный модуль работал в режиме тангенциальной фильтрации «снаружи-внутрь». Такая организация процесса была выбрана с целью обеспечения стабильной работы фильтра в условиях высокого содержания взвешенных веществ в очищаемой воде. Циркуляция суспензии через кожух аппарата позволяет избежать такого негативного явления, как закупоривание торцов волокон осадком ила, которое наблюдается при фильтрации «изнутри-наружу». Фильтрацию проводили круглосуточно в циклическом режиме (рис.2) под управлением контроллера автоматизации. Время фильтрования (tф) составляло 20 мин, время промывки (tп) фильтратом 1 мин, в ходе эксперимента трансмембранное давление промывки (ТМДп) на 0,05-0,1 бар превышало ТМДф, скорость тангенциального потока суспензии в кожухе аппарата (wт) меняли в пределах от 0,04 до 0,8 м/с. Указанному диапазону wт соответствует интервал значений критерия Рейнольдса от 68 до 1360, следовательно, течение жидкости в кожухе мембранного модуля происходило в ламинарном режиме.

Рис.2. График циклической работы мембранного модуля

Рис.2. Циклическая работа мембранного модуля (температура жидкости: +20 оС, wт = 0,14 м/с, ТМДф= 0,2 бар, tф=20 мин, ТМДп=0,3 бар, tп=1 мин)

Варьирование давления фильтрации показало, что поток фильтрата J возрастает с ростом трансмембранного давления от 0,05 до 0,2 бар (рис. 3). Дальнейшее увеличение значения ТМДф не приводит к росту J, что, вероятно, связано тем, что при увеличении трансмембранного давления происходит уплотнение осадка на мембране и возрастает его удельное гидравлическое сопротивление.

Рис. 3. График зависимости удельного потока фильтрата от трансмембранного давления фильтрования.

Рис. 3. Зависимость удельного потока фильтрата от трансмембранного давления фильтрования (температура жидкости +20 оС, wт = 0,47 м/с)

Увеличение концентрации твердой фазы в рециркулирующем растворе мало влияло на скорость фильтрации. Испытания показали, что концентрирование очищаемой суспензии с выходом 95 % жидкости в фильтрат приводит к падению производительности мембранного модуля только на 10 % (рис 4). Возможно, что негативное влияние сгущения суспензии компенсировалось за счет роста ее температуры: обычно за сутки (время обработки одной порции сточной воды) её температура возрастала примерно на 10 градусов (с +15 оС до +25 оС).

Рис. 4. График изменение потока фильтрата.

Рис. 4. Изменение потока фильтрата в течение суток после начала переработки очередной порции сточной воды (четвертые сутки ресурсных испытаний)

Варьирование рециркуляционного расхода показало, что при фиксированном трансмембранном давлении фильтрования (0,2 бар) расход фильтрата снижается с уменьшением скорости тангенциального потока (рис. 5). Это обусловлено увеличением толщины слоя осадка на мембране при снижении скорости потока, движущегося параллельно фильтрующей поверхности. Снижение скорости приводит к уменьшению затрат электроэнергии на циркуляцию жидкости, но одновременно увеличивается необходимая площадь мембран и капитальные затраты на изготовление установки. Как следует из рис. 5, уменьшение wт от 0,8 до 0,04 м/с (в 20 раз) приводит лишь к двукратному падению потока фильтрата. Это позволяет предположить, что оптимальная скорость тангенциального потока находится в области wт < 0,05 м/с.

Рис. 5. График зависимости удельного потока фильтрата от скорости тангенциального потока.

Рис. 5. Зависимость удельного потока фильтрата от скорости тангенциального потока (температура жидкости: +20 оС, ТМДф= 0,2 бар)

Ресурсные испытания мембранного модуля были проведены в течение 10 суток. Работа мембранного модуля была стабильной, что можно видеть из приведенного ниже рис. 6. При установленных параметрах удельный поток фильтрата J составил в среднем 65 л/ч∙м2.

Рис. 6. График работы мембранного модуля.

Рис. 6. Работа мембранного модуля при следующих установленных параметрах: wт = 0,6 м/с, ТМДф= 0,2 бар, ТМДп= 0,25 бар.

Химический анализ очищенной воды проводился в сертифицированной лаборатории, данные по концентрации фосфатов в исходной и очищенной воде представлены на рис. 7, химический анализ по другим компонентам – в табл. 2.

Рис. 7. Концентрация фосфатов в воде, поступающей на доочистку, и в фильтрате.

Рис. 7. Концентрация фосфатов в воде, поступающей на доочистку, и в фильтрате

Таблица 2. Состав исходной сточной воды и фильтрата после мембранной очистки (третьи сутки ресурсных испытаний)

Показатель Исходная вода Фильтрат
рН 7,16 7,65
Взвешенные вещества, мг/л 31 <3
Железо, мг/л 0,52 0,41
Алюминий, мг/л 0,53* <0,04
Аммоний ион, мг/л 20 12
ХПК, мг О2 99 78

*до добавления коагулянта

Ультрафильтрационная мембрана из ПВДФ обеспечивает практически полное удаление из воды взвешенных веществ. Несмотря на высокую концентрацию коагулянта, не наблюдалось проскока алюминия в фильтрат: весь алюминий в форме гидроксида и других нерастворимых соединений задерживался мембраной. В отличие от алюминия железо удалялось только на 20 %. Поведение железа при доочистке сточных вод отличается от его поведения при ультрафильтрации природных вод (как поверхностных, так и подземных). В природных водах преобладает коллоидный гидроксид трехвалентного железа, который эффективно задерживается мембраной из ПВДФ. По-видимому, в сточных водах железо находится в виде соединений с органическими кислотами, и для его гидролиза требуется существенное увеличение рН.

Выводы:

  1. Как показали проведенные лабораторные испытания технология, сочетающая коагуляцию и ультрафильтрацию с использованием мембран из ПВДФ, может быть использована для эффективной доочистки сточных вод после биологической очистки. Задержание взвешенных веществ мембранным модулем составило > 93%, задержание фосфатов – 97 %. Концентрация алюминия в фильтрате не превышала 0,04 мг/л.
  2. Определено значение оптимального трансмембранного давления фильтрования (0,2 бар), которому соответствует максимальный поток фильтрата.
  3. Увеличение расхода рециркуляции (тангенциального потока) приводит к росту потока фильтрата, однако, исходя из технико-экономических соображений, наибольший интерес представляет область низких значений скорости тангенциального потока (меньше 0,05 м/с).
  4. Исследованный мембранный модуль работал стабильно в течение десяти дней с отбором 95% жидкости в фильтрат, при этом концентрирование примесей, подлежащих удалению (взвешенные вещества, фосфаты и др.) не оказывало существенного влияния на его производительность.

 Список литературы:

  1. Гандурина Л.В., Буцева Л.В., Штондина B.C. Реагентный способ удаления соединений фосфора из сточных вод // Водоснабжение и санитарная техника. 2001. № 6.
  2. Дедков Ю.М., Коничев М.А., Кельина С.Ю. Методы доочистки сточных вод от фосфатов // Водоснабжение и санитарная техника. 2003, № 11.
  3. Загорский В.А., Данилович Д.А., Козлов М.Н., Мойжес О.В., Дайнеко Ф.А. Анализ промышленного применения технологий удаления фосфора из городских сточных вод // Водоснабжение и санитарная техника. 2004. № 5.
  4. Zhenga X., Plumeb S., Ernstc M., Crouea J.-P., Jekel M. In-line coagulation prior to UF of treated domestic wastewater – foulants removal, fouling control and phosphorus removal // Journal of Membrane Science. 2012. v. 403– 404.
  5. Майборода А.Б., Петров Д.В., Кичик В.А., Стариков Е.Н. Половолоконная мембрана из поливинилиденфторида и ее применение для очистки природных вод // Мембраны и мембранные технологии. – 2013.
Back to Top